§ 107. Доплеровское смещение спектральных линий Если расстояние между излучающим телом и наблюдателем меняется, то скорость их относительного движения имеет составляющую вдоль луча зрения, называемую лучевой скоростью. По линейчатым спектрам лучевые скорости могут быть измерены на основании эффекта Доплера, заключающегося в смещении спектральных линий на величину, пропорциональную лучевой скорости, вне зависимости от удаленности источника излучения. При этом, если расстояние увеличивается (лучевая скорость положительна), то смещение линий происходит в красную сторону, а в противном случае — в синюю. Объяснить это явление можно на основании следующих элементарных рассуждений. Вообразим наблюдателя, воспринимающего от объекта луч света. Предположим, что этот луч представляет собой отдельное непрерывное электромагнитное колебание (цуг волн). Пусть за 1 сек источник излучает n волн длиной l каждая. Т
...
Читать дальше »
|
§ 106. Свойства излучения и основы спектрального анализа Анализ изучения — наиболее важный астрофизический метод; с его помощью получена основная часть наших знаний о космических объектах. Тепловое излучение. Всякое, даже слабо нагретое тело излучает электромагнитные волны (тепловое излучение). Однако при низких температурах, не превышающих 1000 °К, излучаются главным образом инфракрасные лучи и радиоволны. По мере дальнейшего нагревания спектр теплового излучения меняется: во-первых, увеличивается общее количество излучаемой энергии, во-вторых, появляются лучи все более и более коротких длин волн — видимые (от красных до фиолетовых), ультрафиолетовые, рентгеновские и т.д. При каждом данном значении температуры нагретое тело излучает сильнее всего в некоторой области спектра, определяющей видимый цвет объекта. Так, например, при температуре 2000°, как правило, наиболее интенсивно излучаются красные лучи, при 6000° — желто-зеленые, а при более высо
...
Читать дальше »
|
§105. Ослабление света при прохождении сквозь вещество Поглощающие свойства среды принято характеризовать оптической толщиной t, под которой понимается натуральный логарифм отношения светового потока до прохождения через рассматриваемый слой и после прохождения сквозь него: (7.20) (Десятичный логарифм того же отношения, т.е. называют оптической плотностью.) Из этого определения следует, что после прохождения слоя с оптической толщиной t световой поток, а также интенсивность I уменьшаются в et раз, т.е. F = F0e-t(7.21) и I = I0e-t(7.22) где е = 2,718...— основание натуральных логарифмов
...
Читать дальше »
|
§ 104. Некоторые сведения из молекулярной физики Идеальный газ. Большинство астрономических объектов состоит из газа, который можно рассматривать как идеальный, так что справедливо основное уравнение состояния (7.9) В этой формуле р — внутреннее давление газа, r — его плотность, m — молекулярный вес газа, Т — его абсолютная температура, R = 8,32×107 эрг/град× моль —универсальная газовая постоянная. Как известно, отдельные молекулы, из которых состоит вещество, находятся в беспорядочном тепловом движении. Если молекула, имеющая массу т, движется со скоростью v , то ее кинетическая энергия равна
...
Читать дальше »
|
§ 103. Понятие об астрофотометрии Количество световой энергии, излучаемой телом, является одной из существенных его характеристик. Имеется два основных способа измерения этой величины: либо непосредственное определение количества световой энергии, дошедшей от данного тела до измерительного прибора, либо сравнение излучения исследуемого объекта с излучением какого-нибудь другого, излучательная способность которого известна. Источники света даже одинаковой мощности могут сильно различаться по спектральному составу своего излучения. Так, например, Солнце больше всего излучает желто-зеленые лучи, в то время как некоторые звезды испускают преимущественно голубые и синие лучи. С другой стороны, имеются объекты (например, так называемые радиогалактики), которые в диапазоне радиоволн излучают в несколько раз сильнее, чем во всех остальных областях спектра. Отсюда видно, что сравнивать излучение двух объектов имеет смысл только в одной и той же спектральной области.
...
Читать дальше »
|
§ 102. Электромагнитное излучение, исследуемое в астрофизике Как известно, видимый свет является частным видом электромагнитного излучения, которое испускается не непрерывно, а отдельными порциями (квантами), характеризующимися величиной своей энергии. Совокупность всех видов излучения называется спектром электромагнитного излучения. За единицу измерения энергии квантов обычно принимают электрон-вольт (эв). Это — энергия, которую приобретает свободный электрон (т.е. электрический заряд е = —4,8×10-10 СГСЭ), ускоренный электрическим полем с разностью потенциалов в 1 вольт (в) = 1/300 СГСЭ. Поэтому Кванты видимого света обладают энергиями в 2-3 эв и занимают лишь небольшую область электромагнитного спектра, исследуемого в астрофизике, который про
...
Читать дальше »
|
§ 101. Задачи и основные разделы астрофизики Цель астрофизики — изучение физической природы и эволюции отдельных космических объектов, включая и всю Вселенную. Таким образом, астрофизика решает наиболее общие задачи астрономии в целом. За последние десятилетия она стала ведущим разделом астрономии. Это не означает, что роль таких "классических” разделов как небесная механика, астрометрия и т.п. — уменьшилась. Наоборот, количество и значимость работ в традиционных областях астрономии в настоящее время также растет, но в астрофизике этот рост происходит быстрее. В целом астрономия развивается гармонически как единая наука, и направление исследований в различных ее разделах учитывает взаимные их интересы, в том числе и астрофизики. Так, например, развитие космических исследований частично способствовало возникновению нового раздела небесной механики — астродинамики. Построение космологических моделей Вселенной предъявляет особые требования к "классическим” задачам астр
...
Читать дальше »
|
§ 100. Астрономические часы и хронометры При всех астрономических наблюдениях необходимо с той или иной степенью точности отмечать и записывать моменты наблюдаемых явлений. Для этой цели служат астрономические часы и хронометры самых разнообразных конструкций. Маятниковые часы основаны на свойстве маятника сохранять в идеальных условиях постоянным период своего колебания, который зависит от длины маятника. В астрономических часах маятники делаются секундные, т.е. совершающие одно колебание (справа налево, или слева направо) за одну секунду. Длина такого маятника около 1 м.Циферблат имеет часовую, минутную и секундную стрелки. Часовой механизм устроен так, что каждое колебание маятника сопровождается четким ударом, хорошо слышимым на расстоянии нескольких метров. Это позволяет считать секунды, не глядя на часы, и отмечать моменты по часам с точностью до десятой доли секунды. Период колебания маятника очень чувствителен к изменению внешних условий и
...
Читать дальше »
|
§ 99. Зенит-телескоп, призменная астролябия, фотографическая зенитная труба Кроме основных инструментов, описанных в предыдущих параграфах, на современных обсерваториях для некоторых наблюдений используются специальные инструменты. Так, например, зенит-телескоп (рис. 76) служит для точного измерения малых разностей зенитных расстояний звезд вблизи зенита. Систематические наблюдения на зенит-телескопах ведутся главным образом для определения точных значений географической широты места наблюдения, с целью изучения движений полюсов Земли (см. § 74). Призменная астролябия служит исключительно для наблюдения звезд на некоторой постоянной высоте h0 , обычно близкой к 60°. Схема призменной астролябии дана на рис. 77. Свет от звезды падает на верхнюю грань равносторонней тр
...
Читать дальше »
|
§ 98. Пассажный инструмент Стационарный пассажный инструмент устроен совершенно так же, как и меридианный круг, только вместо точного разделенного круга на горизонтальную ось насажен небольшой круг — искатель, который служит для приближенной установки трубы на нужную высоту над горизонтом. Этот инструмент используется только для наблюдения моментов прохождения светил через меридиан, по которым затем вычисляются их прямые восхождения. Для определения точного времени, которое также получается из моментов прохождения светил через меридиан, употребляются небольшие переносные пассажные инструменты (рис. 75), которые, кроме размеров, отличаются от стационарных пассажных инструментов некоторыми конструктивными особенностями. Главная из них та, что с помощью особого приспособления горизонтальную ось вместе с трубой во время наблюдений одного и того же светила можно быстро переложить так, что восточный конец оси ляжет на
...
Читать дальше »
|
« 1 2 ... 7 8 9 10 11 ... 18 19 » |